The measured relative entropies of quantum states and channels find operational significance in quantum information theory as achievable error rates in hypothesis testing tasks. They are of interest in the near term, as they correspond to hybrid quantum--classical strategies with technological requirements far less challenging to implement than required by the most general strategies allowed by quantum mechanics. In this paper, we prove that these measured relative entropies can be calculated efficiently by means of semi-definite programming, by making use of variational formulas for the measured relative entropies of states and semi-definite representations of the weighted geometric mean and the operator connection of the logarithm. Not only do the semi-definite programs output the optimal values of the measured relative entropies of states and channels, but they also provide numerical characterizations of optimal strategies for achieving them, which is of significant practical interest for designing hypothesis testing protocols.


翻译:量子态与量子信道的测量相对熵在量子信息理论中具有操作意义,它们对应着假设检验任务中可达到的错误率。这些度量在当前阶段尤其受到关注,因为它们对应于混合量子-经典策略,其技术实现要求远低于量子力学所允许的最一般策略。本文证明,通过利用量子态测量相对熵的变分公式、加权几何平均的半定表示以及对数算子连接的半定表示,这些测量相对熵可通过半定规划高效计算。这些半定规划不仅能输出量子态与量子信道测量相对熵的最优值,还能提供实现这些最优值的策略的数值表征,这对于设计假设检验协议具有重要的实际意义。

0
下载
关闭预览

相关内容

相对熵(relative entropy),又被称为Kullback-Leibler散度(Kullback-Leibler divergence)或信息散度(information divergence),是两个概率分布(probability distribution)间差异的非对称性度量。在在信息理论中,相对熵等价于两个概率分布的信息熵(Shannon entropy)的差值.
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
A survey on deep hashing for image retrieval
Arxiv
15+阅读 · 2020年6月10日
VIP会员
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员