In the NP-hard Optimizing PD with Dependencies (PDD) problem, the input consists of a phylogenetic tree $T$ over a set of taxa $X$, a food-web that describes the prey-predator relationships in $X$, and integers $k$ and $D$. The task is to find a set $S$ of $k$ species that is viable in the food-web such that the subtree of $T$ obtained by retaining only the vertices of $S$ has total edge weight at least $D$. Herein, viable means that for every predator taxon of $S$, the set $S$ contains at least one prey taxon. We provide the first systematic analysis of PDD and its special case s-PDD from a parameterized complexity perspective. For solution-size related parameters, we show that PDD is FPT with respect to $D$ and with respect to $k$ plus the height of the phylogenetic tree. Moreover, we consider structural parameterizations of the food-web. For example, we show an FPT-algorithm for the parameter that measures the vertex deletion distance to graphs where every connected component is a complete graph. Finally, we show that s-PDD admits an FPT-algorithm for the treewidth of the food-web. This disproves a conjecture of Faller et al. [Annals of Combinatorics, 2011] who conjectured that s-PDD is NP-hard even when the food-web is a tree.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Anomalous Instance Detection in Deep Learning: A Survey
Arxiv
16+阅读 · 2020年2月6日
Deep Learning in Video Multi-Object Tracking: A Survey
Arxiv
58+阅读 · 2019年7月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员