Recently, Large Vision Language Models (LVLMs) have unlocked many complex use cases that require Multi-Modal (MM) understanding (e.g., image captioning or visual question answering) and MM generation (e.g., text-guided image generation or editing) capabilities. To further improve the output fidelityof LVLMs we introduce UniRAG, a plug-and-play technique that adds relevant retrieved information to prompts as few-shot examples during inference. Unlike the common belief that Retrieval Augmentation (RA) mainly improves generation or understanding of uncommon entities, our evaluation results on the MSCOCO dataset with common entities show that both proprietary models like GPT-4o and Gemini-Pro and smaller open-source models like LLaVA, LaVIT, and Emu2 significantly enhance their generation quality when their input prompts are augmented with relevant information retrieved by Vision-Language (VL) retrievers like UniIR models. All the necessary code to reproduce our results is available at https://github.com/castorini/UniRAG


翻译:近年来,大型视觉语言模型(LVLMs)已解锁了许多需要多模态(MM)理解(例如,图像描述或视觉问答)和MM生成(例如,文本引导的图像生成或编辑)能力的复杂应用场景。为了进一步提升LVLMs的输出保真度,我们提出了UniRAG,一种即插即用的技术,它在推理过程中将检索到的相关信息作为少样本示例添加到提示中。与普遍认为检索增强(RA)主要提升对不常见实体的生成或理解的观点不同,我们在包含常见实体的MSCOCO数据集上的评估结果表明,无论是专有模型如GPT-4o和Gemini-Pro,还是较小的开源模型如LLaVA、LaVIT和Emu2,当它们的输入提示通过视觉语言(VL)检索器(如UniIR模型)检索到的相关信息进行增强时,其生成质量均得到显著提升。用于复现我们结果的所有必要代码均可在 https://github.com/castorini/UniRAG 获取。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员