With the constant increase of the number of autonomous vehicles and connected objects, tools to understand and reproduce their mobility models are required. We focus on chaotic dynamics and review their applications in the design of mobility models. We also provide a review of the nonlinear tools used to characterize mobility models, as it can be found in the literature. Finally, we propose a method to generate traces for a given scenario involving moving people, using tools from the nonlinear analysis domain usually dedicated to topological analysis of chaotic attractors.


翻译:随着自动驾驶车辆和互联物体数量的不断增加,需要工具来理解和复现它们的移动模型。我们专注于混沌动力学,并回顾它们在移动模型设计中的应用。我们还提供了一个非线性工具的综述,该工具用于表征可以在文献中找到的移动模型。最后,我们提出了一种方法,使用通常用于混沌吸引子拓扑分析的非线性分析领域的工具为涉及移动人员的特定场景生成跟踪。

0
下载
关闭预览

相关内容

Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年5月11日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员