In this paper, a second-order linearized discontinuous Galerkin method on general meshes, which treats the backward differentiation formula of order two (BDF2) and Crank-Nicolson schemes as special cases, is proposed for solving the two-dimensional Ginzburg-Landau equations with cubic nonlinearity. By utilizing the discontinuous Galerkin inverse inequality and the mathematical induction method, the unconditionally optimal error estimate in $L^2$-norm is obtained. The core of the analysis in this paper resides in the classification and discussion of the relationship between the temporal step size and the spatial step size, specifically distinguishing between the two scenarios of tau^2 \leq h^{k+1}$and$\tau^2 > h^{k+1}$, where$k$denotes the degree of the discrete spatial scheme. Finally, this paper presents two numerical examples involving various grids and polynomial degrees to verify the correctness of the theoretical results.


翻译:本文针对具有立方非线性项的二维Ginzburg-Landau方程,提出了一种适用于一般网格的二阶线性化间断伽辽金方法,该方法将二阶后向差分公式与Crank-Nicolson格式作为特例包含其中。通过运用间断伽辽金逆不等式和数学归纳法,获得了$L^2$范数下的无条件最优误差估计。本文分析的核心在于对时间步长与空间步长关系的分类讨论,具体区分了$\tau^2 \leq h^{k+1}$和$\tau^2 > h^{k+1}$两种情形,其中$k$表示离散空间格式的多项式次数。最后,本文通过包含不同网格类型和多项式次数的两个数值算例验证了理论结果的正确性。

0
下载
关闭预览

相关内容

论文(Paper)是专知网站核心资料文档,包括全球顶级期刊、顶级会议论文,及全球顶尖高校博士硕士学位论文。重点关注中国计算机学会推荐的国际学术会议和期刊,CCF-A、B、C三类。通过人机协作方式,汇编、挖掘后呈现于专知网站。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员