Robotic arms are increasingly deployed in uncertain environments, yet conventional control pipelines often become rigid and brittle when exposed to perturbations or incomplete information. Virtual Model Control (VMC) enables compliant behaviors by embedding virtual forces and mapping them into joint torques, but its reliance on fixed parameters and limited coordination among virtual components constrains adaptability and may undermine stability as task objectives evolve. To address these limitations, we propose Adaptive VMC with Large Language Model (LLM)- and Lyapunov-Based Reinforcement Learning (RL), which preserves the physical interpretability of VMC while supporting stability-guaranteed online adaptation. The LLM provides structured priors and high-level reasoning that enhance coordination among virtual components, improve sample efficiency, and facilitate flexible adjustment to varying task requirements. Complementarily, Lyapunov-based RL enforces theoretical stability constraints, ensuring safe and reliable adaptation under uncertainty. Extensive simulations on a 7-DoF Panda arm demonstrate that our approach effectively balances competing objectives in dynamic tasks, achieving superior performance while highlighting the synergistic benefits of LLM guidance and Lyapunov-constrained adaptation.


翻译:机械臂在不确定环境中的部署日益增多,然而传统控制流程在面临扰动或信息不完整时往往变得僵化且脆弱。虚拟模型控制通过嵌入虚拟力并将其映射为关节扭矩来实现顺应行为,但其对固定参数的依赖以及虚拟组件间有限的协调性限制了适应性,并可能随着任务目标演变而破坏稳定性。为克服这些局限,我们提出基于大语言模型与李雅普诺夫的强化学习自适应虚拟模型控制,该方法在保持VMC物理可解释性的同时支持稳定性保障的在线适应。LLM提供结构化先验与高层推理,以增强虚拟组件间的协调性、提升样本效率,并促进对不同任务需求的灵活调整。与之互补的是,基于李雅普诺夫的强化学习强制执行理论稳定性约束,确保在不确定性下的安全可靠适应。在7自由度Panda机械臂上的大量仿真表明,我们的方法能有效平衡动态任务中的竞争目标,在实现卓越性能的同时,凸显了LLM引导与李雅普诺夫约束适应的协同优势。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员