Face Morphing Attacks pose a threat to the security of identity documents, especially with respect to a subsequent access control process, because it enables both individuals involved to exploit the same document. In this study, face embeddings serve two purposes: pre-selecting images for large-scale Morphing Attack generation and detecting potential Morphing Attacks. We build upon previous embedding studies in both use cases using the MagFace model. For the first objective, we employ an pre-selection algorithm that pairs individuals based on face embedding similarity. We quantify the attack potential of differently morphed face images to compare the usability of pre-selection in automatically generating numerous successful Morphing Attacks. Regarding the second objective, we compare embeddings from two state-of-the-art face recognition systems in terms of their ability to detect Morphing Attacks. Our findings demonstrate that ArcFace and MagFace provide valuable face embeddings for image pre-selection. Both open-source and COTS face recognition systems are susceptible to generated attacks, particularly when pre-selection is based on embeddings rather than random pairing which was only constrained by soft biometrics. More accurate face recognition systems exhibit greater vulnerability to attacks, with COTS systems being the most susceptible. Additionally, MagFace embeddings serve as a robust alternative for detecting morphed face images compared to the previously used ArcFace embeddings. The results endorse the advantages of face embeddings in more effective image pre-selection for face morphing and accurate detection of morphed face images. This is supported by extensive analysis of various designed attacks. The MagFace model proves to be a powerful alternative to the commonly used ArcFace model for both objectives, pre-selection and attack detection.


翻译:暂无翻译

0
下载
关闭预览

相关内容

两人亲密社交应用,官网: trypair.com/
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员