With the development of deep neural language models, great progress has been made in information extraction recently. However, deep learning models often overfit on noisy data points, leading to poor performance. In this work, we examine the role of information entropy in the overfitting process and draw a key insight that overfitting is a process of overconfidence and entropy decreasing. Motivated by such properties, we propose a simple yet effective co-regularization joint-training framework TIER-A, Aggregation Joint-training Framework with Temperature Calibration and Information Entropy Regularization. Our framework consists of several neural models with identical structures. These models are jointly trained and we avoid overfitting by introducing temperature and information entropy regularization. Extensive experiments on two widely-used but noisy datasets, TACRED and CoNLL03, demonstrate the correctness of our assumption and the effectiveness of our framework.


翻译:最近随着深层神经语言模型的开发,在信息提取方面取得了巨大进展,然而,深层次的学习模型往往过度适应吵闹的数据点,导致业绩不佳。在这项工作中,我们研究了信息在超装过程中的渗透作用,并得出了一种关键的认识,即过度适应是一个过度自信和增生的过程。由于这些特性,我们提议了一个简单而有效的共同正规化联合培训框架TIER-A,与温度校准和信息正规化相结合的联合培训框架。我们的框架由若干具有相同结构的神经模型组成。这些模型经过联合培训,我们避免通过引入温度和信息的正规化而过度适应。关于两个广泛使用但又吵闹的数据集TACRED和CONLL03的大规模实验,显示了我们假设的正确性和框架的有效性。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Arxiv
10+阅读 · 2017年7月4日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员