Emerging interconnects, such as CXL and NVLink, have been integrated into the intra-host topology to scale more accelerators and facilitate efficient communication between them, such as GPUs. To keep pace with the accelerator's growing computing throughput, the interconnect has seen substantial enhancement in link bandwidth, e.g., 256GBps for CXL 3.0 links, which surpasses Ethernet and InfiniBand network links by an order of magnitude or more. Consequently, when data-intensive jobs, such as LLM training, scale across multiple hosts beyond the reach limit of the interconnect, the performance is significantly hindered by the limiting bandwidth of the network infrastructure. We address the problem by proposing DFabric, a two-tier interconnect architecture. We address the problem by proposing DFabric, a two-tier interconnect architecture. First, DFabric disaggregates rack's computing units with an interconnect fabric, i.e., CXL fabric, which scales at rack-level, so that they can enjoy intra-rack efficient interconnecting. Second, DFabric disaggregates NICs from hosts, and consolidates them to form a NIC pool with CXL fabric. By providing sufficient aggregated capacity comparable to interconnect bandwidth, the NIC pool bridges efficient communication across racks or beyond the reach limit of interconnect fabric. However, the local memory accessing becomes the bottleneck when enabling each host to utilize the NIC pool efficiently. To the end, DFabric builds a memory pool with sufficient bandwidth by disaggregating host local memory and adding more memory devices. We have implemented a prototype of DFabric that can run applications transparently. We validated its performance gain by running various microbenchmarks and compute-intensive applications such as DNN and graph.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员