Discrepancy theory provides powerful tools for producing higher-quality objects which "beat the union bound" in fundamental settings throughout combinatorics and computer science. However, this quality has often come at the price of more expensive algorithms. We introduce a new framework for bridging this gap, by allowing for the efficient implementation of discrepancy-theoretic primitives. Our framework repeatedly solves regularized optimization problems to low accuracy to approximate the partial coloring method of [Rot17], and simplifies and generalizes recent work of [JSS23] on fast algorithms for Spencer's theorem. In particular, our framework only requires that the discrepancy body of interest has exponentially large Gaussian measure and is expressible as a sublevel set of a symmetric, convex function. We combine this framework with new tools for proving Gaussian measure lower bounds to give improved algorithms for a variety of sparsification and coloring problems. As a first application, we use our framework to obtain an $\widetilde{O}(m \cdot \epsilon^{-3.5})$ time algorithm for constructing an $\epsilon$-approximate spectral sparsifier of an $m$-edge graph, matching the sparsity of [BSS14] up to constant factors and improving upon the $\widetilde{O}(m \cdot \epsilon^{-6.5})$ runtime of [LeeS17]. We further give a state-of-the-art algorithm for constructing graph ultrasparsifiers and an almost-linear time algorithm for constructing linear-sized degree-preserving sparsifiers via discrepancy theory; in the latter case, such sparsifiers were not known to exist previously. We generalize these results to their analogs in sparsifying isotropic sums of positive semidefinite matrices. Finally, to demonstrate the versatility of our technique, we obtain a nearly-input-sparsity time constructive algorithm for Spencer's theorem (where we recover a recent result of [JSS23]).


翻译:暂无翻译

0
下载
关闭预览

相关内容

这个新版本的工具会议系列恢复了从1989年到2012年的50个会议的传统。工具最初是“面向对象语言和系统的技术”,后来发展到包括软件技术的所有创新方面。今天许多最重要的软件概念都是在这里首次引入的。2019年TOOLS 50+1在俄罗斯喀山附近举行,以同样的创新精神、对所有与软件相关的事物的热情、科学稳健性和行业适用性的结合以及欢迎该领域所有趋势和社区的开放态度,延续了该系列。 官网链接:http://tools2019.innopolis.ru/
专知会员服务
51+阅读 · 2020年12月14日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员