We show that Curved Boolean Logic (CBL) admits a calibration-free fixed point at which the per-face holonomy theta_0 is the same across independent minimal faces (CHSH, KCBS, SAT_6). Equality is enforced by solving the two-component system F(delta, gamma_4, gamma_5, gamma_6) = (theta_0^(4) - theta_0^(5), theta_0^(5) - theta_0^(6)) = 0 with a Gauss-Newton method (no external scale). A finite-difference Jacobian is full rank at the solution, implying local uniqueness. Working at the coupling level g = |theta_0|/(2*pi*n) removes hidden length factors; at the equality point our normalization audit shows g = alpha (Thomson limit) within numerical tolerance. The SU(1,1) corner words and overlap placements used to compute theta_0 are specified exactly; we also report a variational minimax analysis on g and a pilot non-backtracking spectral density that coincides numerically with the per-edge coupling, suggesting a purely topological formulation. Scope: the match is to the low-energy (Thomson) limit; a full spectral equality on the contextual complex is left as a short conjecture. These results promote the CBL--alpha connection from a calibrated identification to a calibration-free derivation candidate.


翻译:我们证明弯曲布尔逻辑(CBL)存在一个无标定不动点,在该点处各独立最小面(CHSH、KCBS、SAT_6)的每面完整角θ_0均相等。通过采用高斯-牛顿法(无需外部尺度)求解双分量系统F(δ, γ_4, γ_5, γ_6) = (θ_0^(4) - θ_0^(5), θ_0^(5) - θ_0^(6)) = 0来强制实现该等值性。在解点处有限差分雅可比矩阵满秩,意味着解具有局部唯一性。在耦合层级g = |θ_0|/(2*π*n)上运算可消除隐式长度因子;在等值点处,我们的归一化审计显示g在数值容差范围内等于α(汤姆逊极限)。用于计算θ_0的SU(1,1)角词与重叠布局均被精确指定;我们还报告了关于g的变分极小极大分析,以及一个与每边耦合数值重合的试验性非回溯谱密度,这暗示了纯拓扑表述的可能性。适用范围:当前匹配针对低能(汤姆逊)极限;在语境复形上的完整谱等值性作为简短猜想留待后续研究。这些结果将CBL-α关联从标定识别推进为无标定推导的候选方案。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员