We propose selective-training Gaussian head avatars (STGA) to enhance the details of dynamic head Gaussian. The dynamic head Gaussian model is trained based on the FLAME parameterized model. Each Gaussian splat is embedded within the FLAME mesh to achieve mesh-based animation of the Gaussian model. Before training, our selection strategy calculates the 3D Gaussian splat to be optimized in each frame. The parameters of these 3D Gaussian splats are optimized in the training of each frame, while those of the other splats are frozen. This means that the splats participating in the optimization process differ in each frame, to improve the realism of fine details. Compared with network-based methods, our method achieves better results with shorter training time. Compared with mesh-based methods, our method produces more realistic details within the same training time. Additionally, the ablation experiment confirms that our method effectively enhances the quality of details.


翻译:我们提出选择性训练的高斯头部化身(STGA)以增强动态头部高斯模型的细节表现。该动态头部高斯模型基于FLAME参数化模型进行训练。每个高斯溅射点均嵌入FLAME网格中,从而实现高斯模型的网格驱动动画。在训练前,我们的选择策略会计算每帧中需要优化的三维高斯溅射点。这些三维高斯溅射点的参数在每帧训练中进行优化,而其余溅射点参数则保持冻结。这意味着参与优化过程的溅射点在不同帧中各不相同,从而提升精细细节的真实感。与基于神经网络的方法相比,本方法在更短的训练时间内取得了更优效果;与基于网格的方法相比,本方法在相同训练时间内能生成更真实的细节。消融实验进一步验证了本方法对细节质量的有效提升。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
17+阅读 · 2023年12月4日
Arxiv
22+阅读 · 2021年12月2日
Directions for Explainable Knowledge-Enabled Systems
Arxiv
26+阅读 · 2020年3月17日
Arxiv
11+阅读 · 2018年4月8日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
17+阅读 · 2023年12月4日
Arxiv
22+阅读 · 2021年12月2日
Directions for Explainable Knowledge-Enabled Systems
Arxiv
26+阅读 · 2020年3月17日
Arxiv
11+阅读 · 2018年4月8日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员