The crisis of mental health issues is escalating. Effective counseling serves as a critical lifeline for individuals suffering from conditions like PTSD, stress, etc. Therapists forge a crucial therapeutic bond with clients, steering them towards positivity. Unfortunately, the massive shortage of professionals, high costs, and mental health stigma pose significant barriers to consulting therapists. As a substitute, Virtual Mental Health Assistants (VMHAs) have emerged in the digital healthcare space. However, most existing VMHAs lack the commonsense to understand the nuanced sentiments of clients to generate effective responses. To this end, we propose EmpRes, a novel sentiment-guided mechanism incorporating commonsense awareness for generating responses. By leveraging foundation models and harnessing commonsense knowledge, EmpRes aims to generate responses that effectively shape the client's sentiment towards positivity. We evaluate the performance of EmpRes on HOPE, a benchmark counseling dataset, and observe a remarkable performance improvement compared to the existing baselines across a suite of qualitative and quantitative metrics. Moreover, our extensive empirical analysis and human evaluation show that the generation ability of EmpRes is well-suited and, in some cases, surpasses the gold standard. Further, we deploy EmpRes as a chat interface for users seeking mental health support. We address the deployed system's effectiveness through an exhaustive user study with a significant positive response. Our findings show that 91% of users find the system effective, 80% express satisfaction, and over 85.45% convey a willingness to continue using the interface and recommend it to others, demonstrating the practical applicability of EmpRes in addressing the pressing challenges of mental health support, emphasizing user feedback, and ethical considerations in a real-world context.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员