Integrating third-party packages accelerates modern software engineering, but introduces the risk of software supply chain vulnerabilities. Vulnerabilities in applications' dependencies are being exploited worldwide. Often, these exploits leverage features that are present in a package, yet unneeded by an application. Unfortunately, the current generation of permission managers, such as SELinux, Docker containers, and the Java Security Manager, are too coarse-grained to usefully support engineers and operators in mitigating these vulnerabilities. Current approaches offer permissions only at the application's granularity, lumping legitimate operations made by safe packages with illegitimate operations made by exploited packages. This strategy does not reflect modern engineering practice. we need a permission manager capable of distinguishing between actions taken by different packages in an application's supply chain. In this paper, we describe Next-JSM, the first fine-grained ("supply chain aware") permission manager for Java applications. Next-JSM supports permission management at package-level granularity. Next-JSM faces three key challenges: operating on existing JVMs and without access to application or package source code, minimizing performance overhead in applications with many packages, and helping operators manage finer-grained permissions. We show that these challenges can be addressed through bytecode rewriting; appropriate data structures and algorithms; and an expressive permission notation plus automated tooling to establish default permission. In our evaluation, we report that Next-JSM mitigates 11 of the 12 package vulnerabilities we evaluated and incurs an average 2.72% overhead on the Dacapobench benchmark. Qualitatively, we argue that Next-JSM addresses the shortcomings of the (recently deprecated) Java Security Manager (JSM).


翻译:暂无翻译

0
下载
关闭预览

相关内容

Java 是一门编程语言,拥有跨平台、面向对象、泛型编程等特性。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员