Online averaged stochastic gradient algorithms are more and more studied since (i) they can deal quickly with large sample taking values in high dimensional spaces, (ii) they enable to treat data sequentially, (iii) they are known to be asymptotically efficient. In this paper, we focus on giving explicit bounds of the quadratic mean error of the estimates, and this, with very weak assumptions, i.e without supposing that the function we would like to minimize is strongly convex or admits a bounded gradient.


翻译:在线平均随机梯度算法研究得越来越多,因为(一) 它们可以快速处理在高维空间采集的大型样本值,(二) 它们能够按顺序处理数据,(三) 它们已知是轻微有效的。 在本文中,我们侧重于给出四边形估计中中误差的清晰界限,而这个假设非常薄弱,即不假设我们想要尽量减少的功能是强烈的二次曲线,或承认一个交界梯度。

0
下载
关闭预览

相关内容

分布式并行架构Ray介绍
CreateAMind
10+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
3+阅读 · 2018年10月18日
VIP会员
相关资讯
分布式并行架构Ray介绍
CreateAMind
10+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员