Consider the Telephone Broadcast problem in which an input is a connected graph $G$ on $n$ vertices, a source vertex $s \in V(G)$, and a positive integer $t$. The objective is to decide whether there is a broadcast protocol from $s$ that ensures that all the vertices of $G$ get the message in at most $t$ rounds. We consider the broadcast protocol where, in a round, any node aware of the message can forward it to at most one of its neighbors. As the number of nodes aware of the message can at most double at each round, for a non-trivial instance we have $n \le 2^t$. Hence, the brute force algorithm that checks all the permutations of the vertices runs in time $2^{2^{\calO(t)}} \cdot n^{\calO(1)}$. As our first result, we prove this simple algorithm is the best possible in the following sense. Telephone Broadcast does not admit an algorithm running in time $2^{2^{o(t)}} \cdot n^{\calO(1)}$, unless the \ETH\ fails. To the best of our knowledge, this is only the fourth example of \NP-Complete problem that admits a double exponential lower bound when parameterized by the solution size. It also resolves the question by Fomin, Fraigniaud, and Golovach [WG 2023]. In the same article, the authors asked whether the problem is \FPT\ when parameterized by the feedback vertex set number of the graph. We answer this question in the negative. Telephone Broadcast, when restricted to graphs of the feedback vertex number one, and hence treewidth of two, is \NP-\complete. We find this a relatively rare example of problems that admit a polynomial-time algorithm on trees but is \NP-\complete\ on graphs of treewidth two.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Principal Neighbourhood Aggregation for Graph Nets
Arxiv
17+阅读 · 2020年6月7日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
Arxiv
14+阅读 · 2018年5月15日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Principal Neighbourhood Aggregation for Graph Nets
Arxiv
17+阅读 · 2020年6月7日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
Arxiv
14+阅读 · 2018年5月15日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员