We study Gaussian mechanism in the shuffle model of differential privacy (DP). Particularly, we characterize the mechanism's R\'enyi differential privacy (RDP), showing that it is of the form: $$ \epsilon(\lambda) \leq \frac{1}{\lambda-1}\log\left(\frac{e^{-\lambda/2\sigma^2}}{n^\lambda}\sum_{\substack{k_1+\dotsc+k_n=\lambda;\\k_1,\dotsc,k_n\geq 0}}\binom{\lambda}{k_1,\dotsc,k_n}e^{\sum_{i=1}^nk_i^2/2\sigma^2}\right) $$ We further prove that the RDP is strictly upper-bounded by the Gaussian RDP without shuffling. The shuffle Gaussian RDP is advantageous in composing multiple DP mechanisms, where we demonstrate its improvement over the state-of-the-art approximate DP composition theorems in privacy guarantees of the shuffle model. Moreover, we extend our study to the subsampled shuffle mechanism and the recently proposed shuffled check-in mechanism, which are protocols geared towards distributed/federated learning. Finally, an empirical study of these mechanisms is given to demonstrate the efficacy of employing shuffle Gaussian mechanism under the distributed learning framework to guarantee rigorous user privacy.


翻译:我们用不同的隐私模式(DP) 研究高斯安机制。 特别是, 我们描述这个机制的 R\\ enyi 差异隐私(RDP), 显示它的形式是: $\ epsilon(\ lambda)\ 1\\\ lambda-1\\ log\ lef(\\\\\ e\\\\\\\\\\\\\\ lambda/2\ sigma2\\\\\\ lambda\\ lambäsubstack{ k_ 1\\ dotsc+k_ n ⁇ lambda;\\ k_ dotsc, k_ bengeq= lamblambl_ k_ 1\ dotsc, k_ leqqq=qqqq\ lablambda\\\ k_ 1\\\\\\\\\\ \ \ \ \ \ \ \ \ \ labsc\ 1\ \ \ \\\\\ \ \ \ ladsc\ \ labsc\ \ labsc\ \ \ \ \ \ \ \\\\\\\ \ labsc\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2020年9月6日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年8月20日
A Ptolemaic Partitioning Mechanism
Arxiv
0+阅读 · 2022年8月19日
Arxiv
0+阅读 · 2022年8月19日
VIP会员
相关VIP内容
专知会员服务
41+阅读 · 2020年9月6日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员