Estimating heterogeneous treatment effects in network settings is complicated by interference, meaning that the outcome of an instance can be influenced by the treatment status of others. Existing causal machine learning approaches usually assume a known exposure mapping that summarizes how the outcome of a given instance is influenced by others' treatment, a simplification that is often unrealistic. Furthermore, the interaction between homophily -- the tendency of similar instances to connect -- and the treatment assignment mechanism can induce a network-level covariate shift that may lead to inaccurate treatment effect estimates, a phenomenon that has not yet been explicitly studied. To address these challenges, we propose HINet, a novel method that integrates graph neural networks with domain adversarial training. This combination allows estimating treatment effects under unknown exposure mappings while mitigating the impact of (network-level) covariate shift. An extensive empirical evaluation on synthetic and semi-synthetic network datasets demonstrates the effectiveness of our approach.


翻译:在网络环境中估计异质性处理效应时,干扰效应使问题变得复杂,即个体的结果可能受到其他个体处理状态的影响。现有的因果机器学习方法通常假设存在已知的暴露映射,用以概括给定个体的结果如何受他人处理的影响,这种简化往往不符合现实。此外,同质性(相似个体相互连接的倾向)与处理分配机制之间的相互作用可能引发网络层面的协变量偏移,从而导致处理效应估计不准确,这一现象尚未得到明确研究。为解决这些挑战,我们提出了HINet方法,该方法将图神经网络与域对抗训练相结合。这种组合能够在未知暴露映射的情况下估计处理效应,同时减轻(网络层面)协变量偏移的影响。在合成与半合成网络数据集上的广泛实证评估证明了我们方法的有效性。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员