In this paper, we propose Capacity-Net, a novel unsupervised learning approach aimed at maximizing the achievable rate in reflecting intelligent surface (RIS)-aided millimeter-wave (mmWave) multiple input multiple output (MIMO) systems. To combat severe channel fading of the mmWave spectrum, we optimize the phase-shifting factors of the reflective elements in the RIS to enhance the achievable rate. However, most optimization algorithms rely heavily on complete and accurate channel state information (CSI), which is often challenging to acquire since the RIS is mostly composed of passive components. To circumvent this challenge, we leverage unsupervised learning techniques with implicit CSI provided by the received pilot signals. Specifically, it usually requires perfect CSI to evaluate the achievable rate as a performance metric of the current optimization result of the unsupervised learning method. Instead of channel estimation, the Capacity-Net is proposed to establish a mapping among the received pilot signals, optimized RIS phase shifts, and the resultant achievable rates. Simulation results demonstrate the superiority of the proposed Capacity-Net-based unsupervised learning approach over learning methods based on traditional channel estimation.


翻译:本文提出了一种名为Capacity-Net的新型无监督学习方法,旨在最大化智能反射面辅助的毫米波多输入多输出系统的可达速率。为应对毫米波频谱的严重信道衰落,我们通过优化RIS中反射单元的相移因子来提升可达速率。然而,大多数优化算法严重依赖于完整且准确的信道状态信息,而由于RIS主要由无源元件构成,获取CSI通常具有挑战性。为规避这一难题,我们利用无监督学习技术,以接收到的导频信号作为隐式CSI。具体而言,评估无监督学习方法当前优化结果的性能指标(即可达速率)通常需要完美CSI。本文提出的Capacity-Net无需进行信道估计,而是直接在接收导频信号、优化的RIS相移与最终可达速率之间建立映射关系。仿真结果表明,所提出的基于Capacity-Net的无监督学习方法优于基于传统信道估计的学习方法。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员