Unlearning methods for recommender systems (RS) have emerged to address privacy issues and concerns about legal compliance. However, evolving user preferences and content licensing issues still remain unaddressed. This is particularly true in case of multi-modal recommender systems (MMRS), which aim to accommodate the growing influence of multi-modal information on user preferences. Previous unlearning methods for RS are inapplicable to MMRS due to incompatibility of multi-modal user-item behavior data graph with the matrix based representation of RS. Partitioning based methods degrade recommendation performance and incur significant overhead costs during aggregation. This paper introduces MMRecUN, a new framework for multi-modal recommendation unlearning, which, to the best of our knowledge, is the first attempt in this direction. Given the trained recommendation model and marked forget data, we devise Reverse Bayesian Personalized Ranking (BPR) objective to force the model to forget it. MMRecUN employs both reverse and forward BPR loss mechanisms to selectively attenuate the impact of interactions within the forget set while concurrently reinforcing the significance of interactions within the retain set. Our experiments demonstrate that MMRecUN outperforms baseline methods across various unlearning requests when evaluated on benchmark multi-modal recommender datasets. MMRecUN achieves recall performance improvements of up to $\mathbf{49.85%}$ compared to the baseline methods. It is up to $\mathbf{1.3}\times$ faster than the \textsc{Gold} model, which is trained on retain data from scratch. MMRecUN offers advantages such as superior performance in removing target elements, preservation of performance for retained elements, and zero overhead costs in comparison to previous methods.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年7月3日
Arxiv
0+阅读 · 2024年6月28日
Arxiv
15+阅读 · 2022年6月14日
Arxiv
15+阅读 · 2019年11月26日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
0+阅读 · 2024年7月3日
Arxiv
0+阅读 · 2024年6月28日
Arxiv
15+阅读 · 2022年6月14日
Arxiv
15+阅读 · 2019年11月26日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员