We study $\ell_p$ sampling and frequency moment estimation in a single-pass insertion-only data stream. For $p \in (0,2)$, we present a nearly space-optimal approximate $\ell_p$ sampler that uses $\widetilde{O}(\log n \log(1/\delta))$ bits of space and for $p = 2$, we present a sampler with space complexity $\widetilde{O}(\log^2 n \log(1/\delta))$. This space complexity is optimal for $p \in (0, 2)$ and improves upon prior work by a $\log n$ factor. We further extend our construction to a continuous $\ell_p$ sampler, which outputs a valid sample index at every point during the stream. Leveraging these samplers, we design nearly unbiased estimators for $F_p$ in data streams that include forget operations, which reset individual element frequencies and introduce significant non-linear challenges. As a result, we obtain near-optimal algorithms for estimating $F_p$ for all $p$ in this model, originally proposed by Pavan, Chakraborty, Vinodchandran, and Meel [PODS'24], resolving all three open problems they posed. Furthermore, we generalize this model to what we call the suffix-prefix deletion model, and extend our techniques to estimate entropy as a corollary of our moment estimation algorithms. Finally, we show how to handle arbitrary coordinate-wise functions during the stream, for any $g \in \mathbb{G}$, where $\mathbb{G}$ includes all (linear or non-linear) contraction functions.


翻译:我们研究单次遍历仅插入数据流中的$\ell_p$采样与频率矩估计问题。对于$p \in (0,2)$,我们提出一种近似空间最优的$\ell_p$采样器,其空间复杂度为$\widetilde{O}(\log n \log(1/\delta))$;对于$p = 2$,我们提出的采样器空间复杂度为$\widetilde{O}(\log^2 n \log(1/\delta))$。该空间复杂度在$p \in (0, 2)$范围内达到最优,并较前人工作提升了一个$\log n$因子。我们进一步将构造扩展至连续$\ell_p$采样器,该采样器可在数据流处理过程中的任意时刻输出有效的样本索引。基于这些采样器,我们针对包含遗忘操作(该操作会重置单个元素频率并引入显著的非线性挑战)的数据流,设计了近乎无偏的$F_p$估计器。由此,我们在Pavan、Chakraborty、Vinodchandran和Meel [PODS'24]最初提出的模型中,获得了针对所有$p$值估计$F_p$的近似最优算法,从而解决了他们提出的全部三个开放性问题。此外,我们将该模型推广至后缀-前缀删除模型,并扩展我们的技术以熵估计作为矩估计算法的推论。最后,我们展示了如何在数据流中处理任意坐标函数,其中$g \in \mathbb{G}$,而$\mathbb{G}$包含所有(线性或非线性)收缩函数。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员