Bilateral trade models the problem of facilitating trades between a seller and a buyer having private valuations for the item being sold. In the online version of the problem, the learner faces a new seller and buyer at each time step, and has to post a price for each of the two parties without any knowledge of their valuations. We consider a scenario where, at each time step, before posting prices the learner observes a context vector containing information about the features of the item for sale. The valuations of both the seller and the buyer follow an unknown linear function of the context. In this setting, the learner could leverage previous transactions in an attempt to estimate private valuations. We characterize the regret regimes of different settings, taking as a baseline the best context-dependent prices in hindsight. First, in the setting in which the learner has two-bit feedback and strong budget balance constraints, we propose an algorithm with $O(\log T)$ regret. Then, we study the same set-up with noisy valuations, providing a tight $\widetilde O(T^{\frac23})$ regret upper bound. Finally, we show that loosening budget balance constraints allows the learner to operate under more restrictive feedback. Specifically, we show how to address the one-bit, global budget balance setting through a reduction from the two-bit, strong budget balance setup. This established a fundamental trade-off between the quality of the feedback and the strictness of the budget constraints.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年7月8日
Arxiv
0+阅读 · 2024年7月8日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员