This work studies the threats of adversarial attack on multivariate probabilistic forecasting models and viable defense mechanisms. Our studies discover a new attack pattern that negatively impact the forecasting of a target time series via making strategic, sparse (imperceptible) modifications to the past observations of a small number of other time series. To mitigate the impact of such attack, we have developed two defense strategies. First, we extend a previously developed randomized smoothing technique in classification to multivariate forecasting scenarios. Second, we develop an adversarial training algorithm that learns to create adversarial examples and at the same time optimizes the forecasting model to improve its robustness against such adversarial simulation. Extensive experiments on real-world datasets confirm that our attack schemes are powerful and our defense algorithms are more effective compared with baseline defense mechanisms.


翻译:这项工作研究对多变概率预测模型和可行的防御机制进行对抗性攻击的威胁。 我们的研究发现一种新的攻击模式对目标时间序列的预测产生消极影响,即对过去对少数其他时间序列的观察进行战略性的、稀少的(无法察觉的)修改。 为了减轻这种攻击的影响,我们制定了两种防御战略。 首先,我们在分类方面将以前开发的随机平滑技术推广到多变预测情景。 其次,我们开发了一种对抗性培训算法,学会创建对抗性例子,同时优化预测模型,以提高其抵御这种对抗性模拟的稳健性。 有关现实世界数据集的广泛实验证实,我们的攻击计划是强大的,我们的防御算法比基线防御机制更有效。</s>

0
下载
关闭预览

相关内容

机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Arxiv
38+阅读 · 2020年3月10日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员