Concurrent priority queues are widely used in important workloads, such as graph applications and discrete event simulations. However, designing scalable concurrent priority queues for NUMA architectures is challenging. Even though several NUMA-oblivious implementations can scale up to a high number of threads, exploiting the potential parallelism of insert operation, NUMA-oblivious implementations scale poorly in deleteMin-dominated workloads. This is because all threads compete for accessing the same memory locations, i.e., the highest-priority element of the queue, thus incurring excessive cache coherence traffic and non-uniform memory accesses between nodes of a NUMA system. In such scenarios, NUMA-aware implementations are typically used to improve system performance on a NUMA system. In this work, we propose an adaptive priority queue, called SmartPQ. SmartPQ tunes itself by switching between a NUMA-oblivious and a NUMA-aware algorithmic mode to achieve high performance under all various contention scenarios. SmartPQ has two key components. First, it is built on top of NUMA Node Delegation (Nuddle), a generic low-overhead technique to construct efficient NUMA-aware data structures using any arbitrary concurrent NUMA-oblivious implementation as its backbone. Second, SmartPQ integrates a lightweight decision making mechanism to decide when to switch between NUMA-oblivious and NUMA-aware algorithmic modes. Our evaluation shows that, in NUMA systems, SmartPQ performs best in all various contention scenarios with 87.9% success rate, and dynamically adapts between NUMA-aware and NUMA-oblivious algorithmic mode, with negligible performance overheads. SmartPQ improves performance by 1.87x on average over SprayList, the state-of-theart NUMA-oblivious priority queue.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员