The blind image deconvolution is a challenging, highly ill-posed nonlinear inverse problem. We introduce a Multiscale Hierarchical Decomposition Method (MHDM) that is iteratively solving variational problems with adaptive data and regularization parameters, towards obtaining finer and finer details of the unknown kernel and image. We establish convergence of the residual in the noise-free data case, and then in the noisy data case when the algorithm is stopped early by means of a discrepancy principle. Fractional Sobolev norms are employed as regularizers for both kernel and image, with the advantage of computing the minimizers explicitly in a pointwise manner. In order to break the notorious symmetry occurring during each minimization step, we enforce a positivity constraint on the Fourier transform of the kernels. Numerical comparisons with a single-step variational method and a non-blind MHDM show that our approach produces comparable results, while less laborious parameter tuning is necessary at the price of more computations. Additionally, the scale decomposition of both reconstructed kernel and image provides a meaningful interpretation of the involved iteration steps.


翻译:盲图像去卷积是一个具有挑战性的、高度不适定的非线性逆问题。本文提出一种多尺度层次分解方法(MHDM),该方法通过迭代求解具有自适应数据和正则化参数的变分问题,以逐步获取未知核与图像的更精细细节。我们在无噪声数据情况下建立了残差的收敛性,进而在有噪声数据情况下,通过差异原则提前终止算法时证明了收敛性。采用分数阶Sobolev范数作为核与图像的正则项,其优势在于能以逐点方式显式计算极小化子。为打破每次最小化步骤中出现的对称性难题,我们对核的傅里叶变换施加了非负约束。与单步变分方法及非盲MHDM的数值比较表明,本方法在减少参数调优工作量的同时获得了可比的结果,但需要更多的计算量。此外,重建核与图像的尺度分解为迭代步骤提供了有意义的解释。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
69+阅读 · 2022年9月7日
Arxiv
16+阅读 · 2022年5月17日
VIP会员
相关VIP内容
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员