The attitudes of today's students toward generative AI (GenAI) will significantly influence its adoption in the workplace in the years to come, carrying both economic and social implications. It is therefore crucial to study this phenomenon now and identify obstacles for the successful implementation of GenAI in the workplace, using tools that keep pace with its rapid evolution. For this purpose, we propose the AGAWA scale, which measures attitudes toward an artificial agent utilising GenAI and perceived as a coworker. It is partially based on the TAM and UTAUT models of technology acceptance, taking into account issues that are particularly important in the context of the AI revolution, namely acceptance of its presence and social influence (e.g., as an assistant or even a supervisor), and above all, resolution of moral dilemmas. The advantage of the AGAWA scale is that it takes little time to complete and analyze, as it contains only four items. In the context of such cooperation, we investigated the importance of three factors: concerns about interaction with GenAI, its human-like characteristics, and a sense of human uniqueness, or even superiority over GenAI. An observed manifestation of the attitude towards this technology is the actual need to get help from it. The results showed that positive attitudes toward GenAI as a coworker were strongly associated with all three factors (negative correlation), and those factors were also related to each other (positive correlation). This confirmed the relationship between affective and moral dimensions of trust towards AI and attitudes towards generative AI at the workplace.


翻译:当前学生对生成式人工智能(GenAI)的态度将深刻影响未来工作场所对其的采纳,并带来经济与社会双重影响。因此,必须及时研究这一现象,并借助能跟上其快速演进的工具,识别工作场所成功实施GenAI的障碍。为此,我们提出AGAWA量表,用于测量对被视为同事的、采用GenAI的人工智能体的态度。该量表部分基于技术接受模型(TAM)和统一技术接受与使用理论(UTAUT),同时考虑了在AI革命背景下尤为重要的议题,包括对其存在的接受度与社会影响(例如作为助手甚至主管),尤其是道德困境的解决。AGAWA量表的优势在于仅包含四个项目,完成与分析所需时间极短。在此合作背景下,我们研究了三个因素的重要性:与GenAI交互的担忧、其类人特征,以及人类独特性乃至优越于GenAI的感知。对此技术态度的一个可观测表现是实际寻求其帮助的需求。结果表明,对GenAI作为同事的积极态度与所有三个因素均呈强相关(负相关),且这些因素彼此之间也存在关联(正相关)。这证实了面向AI的情感与道德维度的信任与工作场所中对生成式AI的态度之间存在关联。

0
下载
关闭预览

相关内容

人工智能杂志AI(Artificial Intelligence)是目前公认的发表该领域最新研究成果的主要国际论坛。该期刊欢迎有关AI广泛方面的论文,这些论文构成了整个领域的进步,也欢迎介绍人工智能应用的论文,但重点应该放在新的和新颖的人工智能方法如何提高应用领域的性能,而不是介绍传统人工智能方法的另一个应用。关于应用的论文应该描述一个原则性的解决方案,强调其新颖性,并对正在开发的人工智能技术进行深入的评估。 官网地址:http://dblp.uni-trier.de/db/journals/ai/
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
Top
微信扫码咨询专知VIP会员