A representation theorem relates different mathematical structures by providing an isomorphism between them: that is, a one-to-one correspondence preserving their original properties. Establishing that the two structures substantially behave in the same way, representation theorems typically provide insight and generate powerful techniques to study the involved structures, by cross-fertilising between the methodologies existing for each of the respective branches of mathematics. When the related structures have no obvious a priori connection, however, such results can be, by their own nature, elusive. Here, we show how data-mining across distinct web sources (including the Online Encyclopedia of Integer Sequences, OEIS), was crucial in the discovery of two original representation theorems relating event structures (mathematical structures commonly used to represent concurrent discrete systems) to families of sets (endowed with elementary disjointness and subset relations) and to full graphs, respectively. The latter originally emerged in the apparently unrelated field of bioinformatics. As expected, our representation theorems are powerful, allowing to capitalise on existing theorems about full graphs to immediately conclude new facts about event structures. Our contribution is twofold: on one hand, we illustrate our novel method to mine the web, resulting in thousands of candidate connections between distinct mathematical realms; on the other hand, we explore one of these connections to obtain our new representation theorems. We hope this paper can encourage people with relevant expertise to scrutinize these candidate connections. We anticipate that, building on the ideas presented here, further connections can be unearthed, by refining the mining techniques and by extending the mined repositories.


翻译:暂无翻译

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年7月19日
Arxiv
15+阅读 · 2020年12月17日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员