Modal probabilistic logics provide a framework for reasoning about probability in modal contexts, involving notions such as knowledge, belief, time, and action. In this paper, we study a particular family of these logics, extending the modal Łukasiewicz many-valued logic. These logics are shown to be capable of expressing nuanced probabilistic concepts, including upper and lower probabilities. Our main contribution is a PSPACE-completeness result for two variants of the local consequence problem, providing a precise computational characterisation.


翻译:模态概率逻辑为在模态语境中推理概率提供了框架,涉及知识、信念、时间和行动等概念。本文研究了此类逻辑的一个特定族系,它扩展了模态Łukasiewicz多值逻辑。这些逻辑被证明能够表达细致的概率概念,包括上概率和下概率。我们的主要贡献是针对局部推理问题的两个变体给出了PSPACE完全性结果,从而提供了精确的计算复杂性刻画。

0
下载
关闭预览

相关内容

本话题关于日常用语「概率」,用于讨论生活中的运气、机会,及赌博、彩票、游戏中的「技巧」。关于抽象数学概念「概率」的讨论,请转 概率(数学)话题。
【NeurIPS2025】大型语言模型中关系解码线性算子的结构
专知会员服务
10+阅读 · 2025年11月2日
【NeurIPS2024】几何轨迹扩散模型
专知会员服务
24+阅读 · 2024年10月20日
【ICML2022】知识图谱上逻辑查询的神经符号模型
专知会员服务
28+阅读 · 2022年5月25日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
【NeurIPS2019】图变换网络:Graph Transformer Network
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
【NeurIPS2019】图变换网络:Graph Transformer Network
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员