The Steered Mixture of Experts regression framework has demonstrated strong performance in image reconstruction, compression, denoising, and super-resolution. However, its high computational cost limits practical applications. This work introduces a rasterization-based optimization strategy that combines the efficiency of rasterized Gaussian kernel rendering with the edge-aware gating mechanism of the Steered Mixture of Experts. The proposed method is designed to accelerate two-dimensional image regression while maintaining the model's inherent sparsity and reconstruction quality. By replacing global iterative optimization with a rasterized formulation, the method achieves significantly faster parameter updates and more memory-efficient model representations. In addition, the proposed framework supports applications such as native super-resolution and image denoising, which are not directly achievable with standard rasterized Gaussian kernel approaches. The combination of fast rasterized optimization with the edge-aware structure of the Steered Mixture of Experts provides a new balance between computational efficiency and reconstruction fidelity for two-dimensional image processing tasks.


翻译:导向专家混合回归框架在图像重建、压缩、去噪和超分辨率任务中已展现出卓越性能,但其高昂的计算成本限制了实际应用。本研究提出一种基于栅格化的优化策略,将栅格化高斯核渲染的高效性与导向专家混合模型的边缘感知门控机制相结合。所提方法旨在加速二维图像回归过程,同时保持模型固有的稀疏性与重建质量。通过用栅格化公式替代全局迭代优化,该方法实现了显著更快的参数更新和更高内存效率的模型表示。此外,所提框架支持原生超分辨率和图像去噪等应用,这些是标准栅格化高斯核方法无法直接实现的。快速栅格化优化与导向专家混合模型的边缘感知结构相结合,为二维图像处理任务在计算效率与重建保真度之间提供了新的平衡。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员