Optimal transport has emerged as a fundamental methodology with applications spanning multiple research areas in recent years. However, the convergence rate of the empirical estimator to its population counterpart suffers from the curse of dimensionality, which prevents its application in high-dimensional spaces. While entropic regularization has been proven to effectively mitigate the curse of dimensionality and achieve a parametric convergence rate under mild conditions, these statistical guarantees have not been extended to general regularizers. Our work bridges this gap by establishing analogous results for a broader family of regularizers. Specifically, under boundedness constraints, we prove a convergence rate of order $n^{-1/2} with respect to sample size n. Furthermore, we derive several central limit theorems for divergence regularized optimal transport.


翻译:近年来,最优传输已发展成为横跨多个研究领域的基础方法论。然而,经验估计量向其总体对应量的收敛速率受维度诅咒的影响,这阻碍了其在高维空间中的应用。虽然熵正则化已被证明能有效缓解维度诅咒,并在温和条件下达到参数化收敛速率,但这些统计保证尚未推广至一般正则化器。本研究通过为更广泛的正则化器族建立类似结果,填补了这一空白。具体而言,在有界约束条件下,我们证明了关于样本量 $n$ 的 $n^{-1/2}$ 阶收敛速率。此外,我们推导了散度正则化最优传输的若干中心极限定理。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
35+阅读 · 2021年1月27日
Arxiv
25+阅读 · 2018年1月24日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员