Given a planar graph, a subset of its vertices called terminals, and $k \in \mathbb{N}$, the Face Cover Number problem asks whether the terminals lie on the boundaries of at most $k$ faces of some embedding of the input graph. When a plane graph is given in the input, the problem is known to have a polynomial kernel~\cite{GarneroST17}. In this paper, we present the first polynomial kernel for Face Cover Number when the input is a planar graph (without a fixed embedding). Our approach overcomes the challenge of not having a predefined set of face boundaries by building a kernel bottom-up on an SPR-tree while preserving the essential properties of the face cover along the way.
翻译:给定一个平面图、其顶点的一个子集(称为终端)以及 $k \in \mathbb{N}$,面覆盖数问题询问:是否存在该输入图的某个嵌入,使得所有终端都位于至多 $k$ 个面的边界上。当输入中给定的是一个平面图(即已嵌入)时,已知该问题存在多项式核~\cite{GarneroST17}。在本文中,我们首次针对输入为平面图(无固定嵌入)的情况,为面覆盖数问题提出了一个多项式核。我们的方法通过自底向上地在 SPR 树上构建核,并在此过程中保持面覆盖的关键性质,从而克服了没有预定义面边界集合的挑战。