A numerical integrator for $\dot{x}=f(x)$ is called \emph{stable} if, when applied to the 1D Dahlquist test equation $\dot{x}=\lambda x,\lambda\in\mathbb{C}$ with fixed timestep $h>0$, the numerical solution remains bounded as the number of steps tends to infinity. It is well known that no explicit integrator may remain stable beyond certain limits in $\lambda$. Furthermore, these stability limits are only tight for certain specific integrators (different in each case), which may then be called `optimally stable'. Such optimal stability results are typically proven using sophisticated techniques from complex analysis, leading to rather abstruse proofs. In this article, we pursue an alternative approach, exploiting connections with the Bernstein and Markov brothers inequalities for polynomials. This simplifies the proofs greatly and offers a framework which unifies the diverse results that have been obtained.


翻译:对于微分方程 $\dot{x}=f(x)$ 的数值积分器,若将其应用于一维 Dahlquist 测试方程 $\dot{x}=\lambda x,\lambda\in\mathbb{C}$(采用固定步长 $h>0$),当步数趋于无穷时数值解保持有界,则称该积分器是\emph{稳定的}。众所周知,显式积分器在 $\lambda$ 超出特定界限后无法保持稳定。此外,这些稳定性界限仅对某些特定的积分器(在不同情形下各不相同)是紧的,这类积分器可称为“最优稳定的”。此类最优稳定性结果通常需借助复分析中的复杂技巧来证明,导致证明过程颇为晦涩。本文采用一种替代方法,利用其与多项式 Bernstein 不等式和 Markov 兄弟不等式的联系。这极大地简化了证明,并提供了一个统一现有各类结果的框架。

0
下载
关闭预览

相关内容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI杂志。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/journals/integration/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
14+阅读 · 2024年5月28日
Arxiv
49+阅读 · 2021年5月9日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
14+阅读 · 2024年5月28日
Arxiv
49+阅读 · 2021年5月9日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员