Context: Entity resolution (ER) plays a pivotal role in data management by determining whether multiple records correspond to the same real-world entity. Because of its critical importance across domains such as healthcare, finance, and machine learning and its long research history designing and implementing ER systems remains challenging in practice due to the wide array of methodologies and tools available. This diversity results in a paradox of choice for practitioners, which is further compounded by the various ER variants (record linkage, entity alignment, merge/purge, a.s.o). Objective: This paper introduces Resolvi, a reference architecture for facilitating the design of ER systems. The goal is to facilitate creating extensible, interoperable and scalable ER systems and to reduce architectural decision-making duration. Methods: Software design techniques such as the 4+1 view model or visual communication tools such as UML are used to present the reference architecture in a structured way. Source code analysis and literature review are used to derive the main elements of the reference architecture. Results: This paper identifies generic requirements and architectural qualities of ER systems. It provides design guidelines, patterns, and recommendations for creating extensible, scalable, and interoperable ER systems. Furthermore, it highlights implementation best practices and deployment strategies based on insights from existing systems. Conclusion: The proposed reference architecture offers a foundational blueprint for researchers and practitioners in developing extensible, interoperable, and scalable ER systems. Resolvi provides clear abstractions and design recommendations which simplify architecture decision making, whether designing new ER systems or improving existing designs.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
11+阅读 · 2018年4月8日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员