The convergence of LLM-powered research assistants and AI-based peer review systems creates a critical vulnerability: fully automated publication loops where AI-generated research is evaluated by AI reviewers without human oversight. We investigate this through \textbf{BadScientist}, a framework that evaluates whether fabrication-oriented paper generation agents can deceive multi-model LLM review systems. Our generator employs presentation-manipulation strategies requiring no real experiments. We develop a rigorous evaluation framework with formal error guarantees (concentration bounds and calibration analysis), calibrated on real data. Our results reveal systematic vulnerabilities: fabricated papers achieve acceptance rates up to . Critically, we identify \textit{concern-acceptance conflict} -- reviewers frequently flag integrity issues yet assign acceptance-level scores. Our mitigation strategies show only marginal improvements, with detection accuracy barely exceeding random chance. Despite provably sound aggregation mathematics, integrity checking systematically fails, exposing fundamental limitations in current AI-driven review systems and underscoring the urgent need for defense-in-depth safeguards in scientific publishing.


翻译:大型语言模型驱动的研究助手与基于人工智能的同行评审系统的融合,揭示了一个关键漏洞:即可能形成完全自动化的出版循环——由AI生成的研究在缺乏人工监督的情况下由AI审稿人进行评估。我们通过\textbf{BadScientist}框架对此进行研究,该框架旨在评估以捏造为导向的论文生成智能体是否能够欺骗多模型LLM评审系统。我们的生成器采用无需真实实验的呈现操纵策略。我们开发了一个具有形式化误差保证(集中界限与校准分析)的严格评估框架,并在真实数据上进行了校准。我们的结果揭示了系统性漏洞:捏造的论文获得高达的接受率。关键的是,我们发现了\textit{担忧-接受冲突}现象——审稿人频繁标记诚信问题,却仍给出达到接受水平的评分。我们提出的缓解策略仅带来边际改善,检测准确率勉强超过随机猜测水平。尽管聚合数学在理论上可靠,但诚信检查系统性地失效,这暴露了当前AI驱动评审系统的根本局限,并突显了在科学出版中建立深度防御保障机制的迫切需求。

0
下载
关闭预览

相关内容

论文(Paper)是专知网站核心资料文档,包括全球顶级期刊、顶级会议论文,及全球顶尖高校博士硕士学位论文。重点关注中国计算机学会推荐的国际学术会议和期刊,CCF-A、B、C三类。通过人机协作方式,汇编、挖掘后呈现于专知网站。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员