As research increasingly relies on computational methods, the reliability of scientific results depends on the quality, reproducibility, and transparency of research software. Ensuring these qualities is critical for scientific integrity and discovery. This paper asks whether Research Software Science (RSS)--the empirical study of how research software is developed and used--should be considered a form of metascience, the science of science. Classification matters because it could affect recognition, funding, and integration of RSS into research improvement. We define metascience and RSS, compare their principles and objectives, and examine their overlaps. Arguments for classification highlight shared commitments to reproducibility, transparency, and empirical study of research processes. Arguments against portraying RSS as a specialized domain focused on a tool rather than the broader scientific enterprise. Our analysis finds RSS advances core goals of metascience, especially in computational reproducibility, and bridges technical, social, and cognitive aspects of research. Its classification depends on whether one adopts a broad definition of metascience--any empirical effort to improve science--or a narrow one focused on systemic and epistemological structures. We argue RSS is best understood as a distinct interdisciplinary domain that aligns with, and in some definitions fits within, metascience. Recognizing it as such can strengthen its role in improving reliability, justify funding, and elevate software development in research institutions. Regardless of classification, applying scientific rigor to research software ensures the tools of discovery meet the standards of the discoveries themselves.


翻译:随着研究日益依赖计算方法,科学结果的可靠性取决于研究软件的质量、可复现性和透明度。确保这些特性对于科学诚信和发现至关重要。本文探讨研究软件科学(RSS)——即对研究软件如何开发与使用的实证研究——是否应被视为元科学(即科学的科学)的一种形式。分类之所以重要,是因为它可能影响RSS的认可度、资金支持及其融入研究改进的过程。我们定义了元科学和RSS,比较了它们的原则与目标,并审视了二者的重叠之处。支持将其归类的论点强调两者对可复现性、透明度以及研究过程实证研究的共同承诺。反对观点则认为RSS应被视作一个专注于工具而非更广泛科学事业的专门领域。我们的分析发现,RSS推进了元科学的核心目标,特别是在计算可复现性方面,并连接了研究的技术、社会与认知维度。其分类取决于人们采用广义的元科学定义——即任何旨在改进科学的实证努力,还是采用专注于系统性与认识论结构的狭义定义。我们认为,RSS最好被理解为一个独特的跨学科领域,它与元科学保持一致,并在某些定义下可归属于元科学。承认这一点可以加强其在提升研究可靠性方面的作用,为其资金支持提供依据,并提升研究机构中软件开发工作的地位。无论分类如何,将科学严谨性应用于研究软件,能确保发现工具本身符合科学发现的标准。

0
下载
关闭预览

相关内容

RSS(简易信息聚合,也叫聚合内容)是一种描述和同步网站内容的格式。RSS可以是以下三个解释的其中一个: Really Simple Syndication;RDF (Resource Description Framework) Site Summary; Rich Site Summary。但其实这三个解释都是指同一种Syndication的技术。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
12+阅读 · 2021年3月24日
Arxiv
14+阅读 · 2018年5月15日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
12+阅读 · 2021年3月24日
Arxiv
14+阅读 · 2018年5月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员