Topic models are widely used for discovering latent thematic structures in large text corpora, yet traditional unsupervised methods often struggle to align with pre-defined conceptual domains. This paper introduces seeded Poisson Factorization (SPF), a novel approach that extends the Poisson Factorization (PF) framework by incorporating domain knowledge through seed words. SPF enables a structured topic discovery by modifying the prior distribution of topic-specific term intensities, assigning higher initial rates to pre-defined seed words. The model is estimated using variational inference with stochastic gradient optimization, ensuring scalability to large datasets. We present in detail the results of applying SPF to an Amazon customer feedback dataset, leveraging pre-defined product categories as guiding structures. SPF achieves superior performance compared to alternative guided probabilistic topic models in terms of computational efficiency and classification performance. Robustness checks highlight SPF's ability to adaptively balance domain knowledge and data-driven topic discovery, even in case of imperfect seed word selection. Further applications of SPF to four additional benchmark datasets, where the corpus varies in size and the number of topics differs, demonstrate its general superior classification performance compared to the unseeded PF model.


翻译:主题模型被广泛用于发现大规模文本语料库中的潜在主题结构,然而传统的无监督方法往往难以与预定义的概念领域对齐。本文提出种子泊松分解(SPF),这是一种通过种子词融入领域知识、扩展泊松分解(PF)框架的新方法。SPF通过修改主题特定词项强度的先验分布,为预定义的种子词分配更高的初始权重,从而实现结构化主题发现。该模型采用随机梯度优化的变分推断进行估计,确保了对大规模数据集的可扩展性。我们详细展示了将SPF应用于亚马逊客户反馈数据集的结果,利用预定义的产品类别作为引导结构。在计算效率和分类性能方面,SPF相较于其他引导式概率主题模型均表现出更优性能。稳健性检验表明,即使在种子词选择不完善的情况下,SPF仍能自适应地平衡领域知识与数据驱动的主题发现。将SPF进一步应用于四个额外基准数据集(其语料库规模各异、主题数量不同)的结果显示,相较于无种子词的PF模型,SPF在分类性能上具有普遍优越性。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
28+阅读 · 2021年10月1日
Arxiv
12+阅读 · 2021年9月13日
Arxiv
11+阅读 · 2018年7月31日
VIP会员
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员