We introduce Universal Neural Architecture Space (UniNAS), a generic search space for neural architecture search (NAS) which unifies convolutional networks, transformers, and their hybrid architectures under a single, flexible framework. Our approach enables discovery of novel architectures as well as analyzing existing architectures in a common framework. We also propose a new search algorithm that allows traversing the proposed search space, and demonstrate that the space contains interesting architectures, which, when using identical training setup, outperform state-of-the-art hand-crafted architectures. Finally, a unified toolkit including a standardized training and evaluation protocol is introduced to foster reproducibility and enable fair comparison in NAS research. Overall, this work opens a pathway towards systematically exploring the full spectrum of neural architectures with a unified graph-based NAS perspective.


翻译:本文提出通用神经架构空间(UniNAS),这是一个用于神经架构搜索(NAS)的通用搜索空间,将卷积网络、Transformer及其混合架构统一在单一灵活框架下。我们的方法既能发现新颖架构,也能在统一框架中分析现有架构。我们还提出一种新的搜索算法,可在该搜索空间中进行遍历,并证明该空间包含的架构在相同训练设置下能超越当前最优手工设计架构。最后,我们开发了包含标准化训练与评估协议的统一工具包,以提升NAS研究的可复现性并实现公平比较。总体而言,本研究通过基于图的统一NAS视角,为系统探索神经架构全谱系开辟了新路径。

0
下载
关闭预览

相关内容

人类接受高层次教育、进行原创性研究的场所。 现在的大学一般包括一个能授予硕士和博士学位的研究生院和数个专业学院,以及能授予学士学位的一个本科生院。大学还包括高等专科学校
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
70+阅读 · 2022年6月30日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员