The efficacy of interpolating via Variably Scaled Kernels (VSKs) is known to be dependent on the definition of a proper scaling function, but no numerical recipes to construct it are available. Previous works suggest that such a function should mimic the target one, but no theoretical evidence is provided. This paper fills both the gaps: it proves that a scaling function reflecting the target one may lead to enhanced approximation accuracy, and it provides a user-independent tool for learning the scaling function by means of Discontinuous Neural Networks ($\delta$NN), i.e., NNs able to deal with possible discontinuities. Numerical evidence supports our claims, as it shows that the key features of the target function can be clearly recovered in the learned scaling function.


翻译:通过变尺度核(VSKs)进行插值的有效性已知依赖于恰当缩放函数的定义,但目前尚无构造该函数的数值配方。先前的研究表明,此类函数应模拟目标函数,但未提供理论依据。本文填补了这两个空白:证明了反映目标函数的缩放函数可提高近似精度,并提供了一种通过间断神经网络($\delta$NN)——即能够处理可能间断的神经网络——来学习缩放函数的用户独立工具。数值证据支持了我们的主张,表明目标函数的关键特征可以在学习到的缩放函数中清晰复现。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员