Prior approaches to lead instrument detection primarily analyze mixture audio, limited to coarse classifications and lacking generalization ability. This paper presents a novel approach to lead instrument detection in multitrack music audio by crafting expertly annotated datasets and designing a novel framework that integrates a self-supervised learning model with a track-wise, frame-level attention-based classifier. This attention mechanism dynamically extracts and aggregates track-specific features based on their auditory importance, enabling precise detection across varied instrument types and combinations. Enhanced by track classification and permutation augmentation, our model substantially outperforms existing SVM and CRNN models, showing robustness on unseen instruments and out-of-domain testing. We believe our exploration provides valuable insights for future research on audio content analysis in multitrack music settings.


翻译:先前的主奏乐器检测方法主要分析混合音频,局限于粗略分类且缺乏泛化能力。本文提出了一种新颖的多轨音乐音频主奏乐器检测方法,通过构建专家标注数据集并设计一种创新框架,将自监督学习模型与基于轨级帧级注意力的分类器相结合。该注意力机制根据听觉重要性动态提取并聚合轨道特异性特征,从而实现对不同乐器类型及组合的精确检测。通过轨道分类与排列增强技术的优化,我们的模型在性能上显著超越了现有的支持向量机(SVM)与卷积循环神经网络(CRNN)模型,并在未见乐器及跨域测试中表现出强鲁棒性。我们相信,本研究为多轨音乐场景下的音频内容分析提供了有价值的见解。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
21+阅读 · 2021年2月13日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
11+阅读 · 2018年4月8日
Arxiv
20+阅读 · 2018年1月17日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
21+阅读 · 2021年2月13日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
11+阅读 · 2018年4月8日
Arxiv
20+阅读 · 2018年1月17日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员