Artificial intelligence is set to revolutionize social and political life in unpredictable ways, raising questions about the principles that ought to guide its development and regulation. By examining digital advertising and social media algorithms, this article highlights how artificial intelligence already poses a significant threat to the republican conception of liberty -- or freedom from unaccountable power -- and thereby highlights the necessity of protecting republican liberty when integrating artificial intelligence into society. At an individual level, these algorithms can subconsciously influence behavior and thought, and those subject to this influence have limited power over the algorithms they engage. At the political level, these algorithms give technology company executives and other foreign parties the power to influence domestic political processes, such as elections; the multinational nature of algorithm-based platforms and the speed with which technology companies innovate make incumbent state institutions ineffective at holding these actors accountable. At both levels, artificial intelligence has thus created a new form of unfreedom: digital domination. By drawing on the works of Quentin Skinner, Philip Pettit, and other republican theorists, this article asserts that individuals must have mechanisms to hold algorithms (and those who develop them) accountable in order to be truly free.


翻译:人工智能将以不可预测的方式彻底改变社会和政治生活,这引发了关于应指导其发展和监管原则的问题。通过考察数字广告和社交媒体算法,本文揭示了人工智能如何已对共和主义自由观——即免于无问责权力的自由——构成重大威胁,从而强调了在将人工智能融入社会时保护共和主义自由的必要性。在个体层面,这些算法能够潜意识地影响行为和思想,而受此影响的个体对其所接触的算法控制力有限。在政治层面,这些算法赋予科技公司高管及其他外部势力影响国内政治进程(如选举)的能力;基于算法的平台具有跨国性质,且科技公司创新速度极快,使得现有国家机构难以有效追究这些行为体的责任。在这两个层面,人工智能因此催生了一种新的不自由形式:数字支配。通过借鉴昆汀·斯金纳、菲利普·佩蒂特等共和主义理论家的著作,本文主张:个体必须拥有对算法(及其开发者)进行问责的机制,方能实现真正的自由。

0
下载
关闭预览

相关内容

人工智能杂志AI(Artificial Intelligence)是目前公认的发表该领域最新研究成果的主要国际论坛。该期刊欢迎有关AI广泛方面的论文,这些论文构成了整个领域的进步,也欢迎介绍人工智能应用的论文,但重点应该放在新的和新颖的人工智能方法如何提高应用领域的性能,而不是介绍传统人工智能方法的另一个应用。关于应用的论文应该描述一个原则性的解决方案,强调其新颖性,并对正在开发的人工智能技术进行深入的评估。 官网地址:http://dblp.uni-trier.de/db/journals/ai/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
34+阅读 · 2022年12月20日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员