Enabling more concise and modular proofs is essential for advancing formal reasoning using interactive theorem provers (ITPs). Since many ITPs, such as Rocq and Lean, use tactic-style proofs, learning higher-level custom tactics is crucial for proof modularity and automation. This paper presents a novel approach to tactic discovery, which leverages Tactic Dependence Graphs (TDGs) to identify reusable proof strategies across multiple proofs. TDGs capture logical dependencies between tactic applications while abstracting away irrelevant syntactic details, allowing for both the discovery of new tactics and the refactoring of existing proofs into more modular forms. We have implemented this technique in a tool called TacMiner and compare it against an anti-unification-based approach Peano to tactic discovery. Our evaluation demonstrates that TacMiner can learn 3x as many tactics as Peano and reduces the size of proofs by 26% across all benchmarks. Furthermore, our evaluation demonstrates the benefits of learning custom tactics for proof automation, allowing a state-of-the-art proof automation tool to achieve a relative increase of 172% in terms of success rate.


翻译:提升证明的简洁性与模块化程度对于推动基于交互式定理证明器(ITP)的形式化推理至关重要。由于Rocq、Lean等多数ITP采用战术式证明范式,学习更高层次的定制战术对证明模块化与自动化具有关键意义。本文提出一种创新的战术发现方法,该方法通过战术依赖图(TDG)识别跨多证明的可复用证明策略。TDG在捕捉战术应用间逻辑依赖关系的同时,能够抽象无关的语法细节,从而既能发现新型战术,又能将现有证明重构为更具模块化的形式。我们将该技术实现为名为TacMiner的工具,并与基于反统一化的战术发现方法Peano进行对比评估。实验表明:TacMiner发现的战术数量是Peano的3倍,且在所有基准测试中平均将证明规模缩减26%。此外,评估结果验证了定制战术学习对证明自动化的增益效果——该方法使前沿证明自动化工具的成功率获得172%的相对提升。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
21+阅读 · 2022年12月20日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员