Nicknames for Group Signatures (NGS) is a new signature scheme that extends Group Signatures (GS) with Signatures with Flexible Public Keys (SFPK). Via GS, each member of a group can sign messages on behalf of the group without revealing his identity, except to a designated auditor. Via SFPK, anyone can create new identities for a particular user, enabling anonymous transfers with only the intended recipient able to trace these new identities. To prevent the potential abuses that this anonymity brings, NGS integrates flexible public keys into the GS framework to support auditable transfers. In addition to introducing NGS, we describe its security model and provide a mathematical construction proved secure in the Random Oracle Model. As a practical NGS use case, we build NickHat, a blockchain-based token-exchange prototype system on top of Ethereum.


翻译:群签名昵称方案(NGS)是一种新型签名方案,它通过灵活公钥签名(SFPK)对群签名(GS)进行了扩展。借助GS,群组成员能够代表群组对消息进行签名,同时不暴露自身身份(仅指定审计方可追溯)。通过SFPK,任何用户可为特定对象创建新身份,实现仅目标接收方可追溯新身份的匿名转账。为防止此类匿名性可能导致的滥用行为,NGS将灵活公钥集成至GS框架中以支持可审计的资产转移。除提出NGS方案外,本文还构建了其安全模型,并给出在随机预言机模型下可证明安全的数学构造。作为NGS的实际应用案例,我们在以太坊上构建了基于区块链的代币交换原型系统NickHat。

0
下载
关闭预览

相关内容

Group一直是研究计算机支持的合作工作、人机交互、计算机支持的协作学习和社会技术研究的主要场所。该会议将社会科学、计算机科学、工程、设计、价值观以及其他与小组工作相关的多个不同主题的工作结合起来,并进行了广泛的概念化。官网链接:https://group.acm.org/conferences/group20/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
29+阅读 · 2020年3月16日
Arxiv
26+阅读 · 2019年11月24日
Arxiv
11+阅读 · 2018年4月8日
Arxiv
11+阅读 · 2018年3月23日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
29+阅读 · 2020年3月16日
Arxiv
26+阅读 · 2019年11月24日
Arxiv
11+阅读 · 2018年4月8日
Arxiv
11+阅读 · 2018年3月23日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员