This paper presents a method for detecting and localizing contact along robot legs using distributed joint torque sensors and a single hip-mounted force-torque (FT) sensor using a generalized momentum-based observer framework. We designed a low-cost strain-gauge-based joint torque sensor that can be installed on every joint to provide direct torque measurements, eliminating the need for complex friction models and providing more accurate torque readings than estimation based on motor current. Simulation studies on a floating-based 2-DoF robot leg verified that the proposed framework accurately recovers contact force and location along the thigh and shin links. Through a calibration procedure, our torque sensor achieved an average 96.4% accuracy relative to ground truth measurements. Building upon the torque sensor, we performed hardware experiments on a 2-DoF manipulator, which showed sub-centimeter contact localization accuracy and force errors below 0.2 N.


翻译:本文提出一种利用分布式关节扭矩传感器与单个髋部安装的力/力矩传感器,在广义动量观测器框架下实现机器人腿部接触检测与定位的方法。我们设计了一种基于应变片的低成本关节扭矩传感器,可安装于每个关节以提供直接扭矩测量,从而无需复杂的摩擦模型,且相比基于电机电流的估计方法能提供更精确的扭矩读数。在浮动基座二自由度机器人腿上的仿真研究表明,所提框架能准确恢复沿大腿与小腿连杆的接触力及接触位置。通过标定流程,我们的扭矩传感器相对于真实测量值达到了平均96.4%的精度。基于该扭矩传感器,我们在二自由度机械臂上进行了硬件实验,结果显示接触定位精度优于厘米级,力误差低于0.2牛。

0
下载
关闭预览

相关内容

传感器(英文名称:transducer/sensor)是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员