In this paper, we study reinforcement learning from human feedback (RLHF) under an episodic Markov decision process with a general trajectory-wise reward model. We developed a model-free RLHF best policy identification algorithm, called $\mathsf{BSAD}$, without explicit reward model inference, which is a critical intermediate step in the contemporary RLHF paradigms for training large language models (LLM). The algorithm identifies the optimal policy directly from human preference information in a backward manner, employing a dueling bandit sub-routine that constantly duels actions to identify the superior one. $\mathsf{BSAD}$ adopts a reward-free exploration and best-arm-identification-like adaptive stopping criteria to equalize the visitation among all states in the same decision step while moving to the previous step as soon as the optimal action is identifiable, leading to a provable, instance-dependent sample complexity $\tilde{\mathcal{O}}(c_{\mathcal{M}}SA^3H^3M\log\frac{1}{\delta})$ which resembles the result in classic RL, where $c_{\mathcal{M}}$ is the instance-dependent constant and $M$ is the batch size. Moreover, $\mathsf{BSAD}$ can be transformed into an explore-then-commit algorithm with logarithmic regret and generalized to discounted MDPs using a frame-based approach. Our results show: (i) sample-complexity-wise, RLHF is not significantly harder than classic RL and (ii) end-to-end RLHF may deliver improved performance by avoiding pitfalls in reward inferring such as overfit and distribution shift.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员