Automation now steers building HVAC, distribution grids, and traffic signals, yet residents rarely have authority to pause or redirect these systems when they harm inclusivity, safety, or accessibility. We formalize a Right-to-Override (R2O) - defining override authorities, evidentiary thresholds, and domain-validated safe fallback states - and introduce a Deliberative Audit Method (DAM) with playbooks for pre-deployment walkthroughs, shadow-mode trials, and post-incident review. We instantiate R2O/DAM in simulations of smart-grid load shedding, building HVAC under occupancy uncertainty, and multi-agent traffic signals. R2O reduces distributional harm with limited efficiency loss: load-shedding disparity in unserved energy drops from 5.61x to 0.69x with constant curtailment; an override eliminates two discomfort-hours for seniors at an energy cost of 77 kWh; and median pedestrian wait falls from 90.4 s to 55.9 s with a 6.0 s increase in mean vehicle delay. We also contribute a policy standard, audit worksheets, and a ModelOps integration pattern to make urban automation contestable and reviewable.


翻译:自动化技术现已主导建筑暖通空调、配电网及交通信号系统,然而当这些系统损害包容性、安全性或可访问性时,居民极少有权暂停或调整其运行。本研究正式提出"否决权"框架——明确定义否决权限、证据阈值及经领域验证的安全回退状态——并引入包含预部署推演、影子模式测试与事后审查规程的"审慎审计方法"。我们在智能电网负荷削减、不确定 occupancy 条件下的建筑暖通空调以及多智能体交通信号系统仿真中实例化该框架。实证表明,否决权能以有限效率损失降低系统性损害:在恒定削减量下,未供电负荷的分布不均度从5.61倍降至0.69倍;一次否决可为老年群体消除2小时不适体验,能耗成本为77千瓦时;行人等待中位数从90.4秒降至55.9秒,而车辆平均延误仅增加6.0秒。本研究同时提出政策标准、审计工作表及ModelOps集成范式,以增强城市自动化系统的可争议性与可审查性。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员