Federated learning (FL) enables a loose set of participating clients to collaboratively learn a global model via coordination by a central server and with no need for data sharing. Existing FL approaches that rely on complex algorithms with massive models, such as deep neural networks (DNNs), suffer from computation and communication bottlenecks. In this paper, we first propose FedHDC, a federated learning framework based on hyperdimensional computing (HDC). FedHDC allows for fast and light-weight local training on clients, provides robust learning, and has smaller model communication overhead compared to learning with DNNs. However, current HDC algorithms get poor accuracy when classifying larger & more complex images, such as CIFAR10. To address this issue, we design FHDnn, which complements FedHDC with a self-supervised contrastive learning feature extractor. We avoid the transmission of the DNN and instead train only the HDC learner in a federated manner, which accelerates learning, reduces transmission cost, and utilizes the robustness of HDC to tackle network errors. We present a formal analysis of the algorithm and derive its convergence rate both theoretically, and show experimentally that FHDnn converges 3$\times$ faster vs. DNNs. The strategies we propose to improve the communication efficiency enable our design to reduce communication costs by 66$\times$ vs. DNNs, local client compute and energy consumption by ~1.5 - 6$\times$, while being highly robust to network errors. Finally, our proposed strategies for improving the communication efficiency have up to 32$\times$ lower communication costs with good accuracy.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年2月12日
Arxiv
0+阅读 · 2024年2月11日
Arxiv
0+阅读 · 2024年2月11日
Arxiv
18+阅读 · 2022年11月21日
Relational Deep Reinforcement Learning
Arxiv
10+阅读 · 2018年6月28日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
0+阅读 · 2024年2月12日
Arxiv
0+阅读 · 2024年2月11日
Arxiv
0+阅读 · 2024年2月11日
Arxiv
18+阅读 · 2022年11月21日
Relational Deep Reinforcement Learning
Arxiv
10+阅读 · 2018年6月28日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员