We study a family of numerical schemes applied to a class of multiscale systems of stochastic differential equations. When the time scale separation parameter vanishes, a well-known Smoluchowski--Kramers diffusion approximation result states that the slow component of the considered system converges to the solution of a standard It\^o stochastic differential equation. We propose and analyse schemes for strong and weak effective approximation of the slow component. Such schemes satisfy an asymptotic preserving property and generalize the methods proposed in a recent article. We fill a gap in the analysis of these schemes and prove strong and weak error estimates, which are uniform with respect to the time scale separation parameter.


翻译:我们研究一组适用于一组多尺度的随机差分方程式的数值方法。当时间尺度分离参数消失时,一个众所周知的Smoluchowski-Kramers扩散近似结果显示,被考虑的系统缓慢部分与标准的Itçóo随机差分方程式的解决方案相融合。我们提出并分析对慢度方程式的强弱有效近差的系统方法。这种系统满足了一种无防护特性,并概括了最近一篇文章中建议的方法。我们在分析这些计划时填补了一个空白,并证明对时间尺度分离参数的误差估计数是强弱的,与时间尺度分离参数一致。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
专知会员服务
54+阅读 · 2021年6月30日
专知会员服务
51+阅读 · 2020年12月14日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
24+阅读 · 2022年2月4日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
专知会员服务
54+阅读 · 2021年6月30日
专知会员服务
51+阅读 · 2020年12月14日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员