The Unconstrained Feature Model (UFM) is a mathematical framework that enables closed-form approximations for minimal training loss and related performance measures in deep neural networks (DNNs). This paper leverages the UFM to provide qualitative insights into neural multivariate regression, a critical task in imitation learning, robotics, and reinforcement learning. Specifically, we address two key questions: (1) How do multi-task models compare to multiple single-task models in terms of training performance? (2) Can whitening and normalizing regression targets improve training performance? The UFM theory predicts that multi-task models achieve strictly smaller training MSE than multiple single-task models when the same or stronger regularization is applied to the latter, and our empirical results confirm these findings. Regarding whitening and normalizing regression targets, the UFM theory predicts that they reduce training MSE when the average variance across the target dimensions is less than one, and our empirical results once again confirm these findings. These findings highlight the UFM as a powerful framework for deriving actionable insights into DNN design and data pre-processing strategies.


翻译:无约束特征模型(UFM)是一种数学框架,能够为深度神经网络(DNNs)中的最小训练损失及相关性能度量提供闭式近似。本文利用UFM为神经多元回归提供定性洞见,该任务是模仿学习、机器人学和强化学习中的关键任务。具体而言,我们探讨了两个核心问题:(1)多任务模型与多个单任务模型在训练性能上如何比较?(2)对回归目标进行白化和归一化是否能提升训练性能?UFM理论预测,当对多个单任务模型施加相同或更强的正则化时,多任务模型能获得严格更小的训练均方误差(MSE),我们的实证结果证实了这一预测。关于对回归目标进行白化和归一化,UFM理论预测,当目标维度间的平均方差小于1时,这些操作能降低训练MSE,我们的实证结果再次验证了这一预测。这些发现凸显了UFM作为一个强大框架,能够为DNN设计和数据预处理策略提供可操作的洞见。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
70+阅读 · 2022年6月30日
Arxiv
126+阅读 · 2020年9月6日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员