In 2022, Olivier Longuet, a French mathematics teacher, created a game called the \textit{calissons puzzle}. Given a triangular grid in a hexagon and some given edges of the grid, the problem is to find a calisson tiling such that no input edge is overlapped and calissons adjacent to an input edge have different orientations. We extend the puzzle to regions $R$ that are not necessarily hexagonal. The first interesting property of this puzzle is that, unlike the usual calisson or domino problems, it is solved neither by a maximal matching algorithm, nor by Thurston's algorithm. This raises the question of its complexity. We prove that if the region $R$ is finite and simply connected, then the puzzle can be solved by an algorithm that we call the \textit{advancing surface algorithm} and whose complexity is $O(|\partial R|^3)$ where $\partial R|$ is the size of the boundary of the region $R$. In the case where the region is the entire infinite triangular grid, we prove that the existence of a solution can be solved with an algorithm of complexity $O(|X|^3)$ where $X$ is the set of input edges. To prove these theorems, we revisit William Thurston's results on the calisson tilability of a region $R$. The solutions involve equivalence between calisson tilings, stepped surfaces and certain DAG cuts that avoid passing through a set of edges that we call \textit{unbreakable}. It allows us to generalize Thurston's theorem characterizing tilable regions by rewriting it in terms of descending paths or absorbing cycles. Thurston's algorithm appears as a distance calculation algorithm following Dijkstra's paradigm. The introduction of a set $X$ of interior edges introduces negative weights that force a Bellman-Ford strategy to be preferred. These results extend Thurston's legacy by using computer science structures and algorithms.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
18+阅读 · 2022年11月21日
Arxiv
15+阅读 · 2022年5月14日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
14+阅读 · 2018年5月15日
Arxiv
11+阅读 · 2018年3月23日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
18+阅读 · 2022年11月21日
Arxiv
15+阅读 · 2022年5月14日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
14+阅读 · 2018年5月15日
Arxiv
11+阅读 · 2018年3月23日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员