Accurate Travel Time Estimation (TTE) is critical for ride-hailing platforms, where errors directly impact user experience and operational efficiency. While existing production systems excel at holistic route-level dependency modeling, they struggle to capture city-scale traffic dynamics and long-tail scenarios, leading to unreliable predictions in large urban networks. In this paper, we propose \model, a scalable and adaptive framework that synergistically integrates link-level modeling with industrial route-level TTE systems. Specifically, we propose a spatio-temporal external attention module to capture global traffic dynamic dependencies across million-scale road networks efficiently. Moreover, we construct a stabilized graph mixture-of-experts network to handle heterogeneous traffic patterns while maintaining inference efficiency. Furthermore, an asynchronous incremental learning strategy is tailored to enable real-time and stable adaptation to dynamic traffic distribution shifts. Experiments on real-world datasets validate MixTTE significantly reduces prediction errors compared to seven baselines. MixTTE has been deployed in DiDi, substantially improving the accuracy and stability of the TTE service.
翻译:准确的行程时间估计(TTE)对网约车平台至关重要,其误差直接影响用户体验与运营效率。现有生产系统虽擅长整体路径级依赖建模,却难以捕捉城市尺度的交通动态与长尾场景,导致在大型城市路网中预测不可靠。本文提出MixTTE,一个可扩展的自适应框架,将路段级建模与工业级路径TTE系统协同整合。具体而言,我们设计了时空外部注意力模块,以高效捕捉百万级路网中的全局交通动态依赖;构建了稳定化的图专家混合网络,在保持推理效率的同时处理异构交通模式;并定制了异步增量学习策略,实现对动态交通分布漂移的实时稳定适应。在真实数据集上的实验表明,MixTTE相较七种基线方法显著降低了预测误差。该模型已在滴滴平台部署,大幅提升了TTE服务的准确性与稳定性。